Inverse design of optical elements based on arrays of dielectric spheres.
نویسندگان
چکیده
Arrays of wavelength scale scatterers are a promising platform for designing optical elements with a compact footprint. The large number of degrees of freedom in this system allows for unique and plentiful functionalities. However, the many variables also create a complex design problem. While intuitive forward design methods work for simple optical elements, they often fail to produce complicated elements, especially those involving multiple elements. We present an inverse design methodology for large arrays of wavelength scale spheres based on both adjoint optimization or sensitivity analysis and generalized multi-sphere Mie theory as a solution to the design problem. We validate our methodology by designing two sets of optical elements with scatterers on sub-wavelength and super-wavelength periodic grids. Both sets consist of a singlet and a doublet lens with one and two layers of spheres respectively designed for 1550 nm. The designed NA is ∼0.33 (∼0.5) for the sub-wavelength (super-wavelength) periodic structure. We find that with the sub-wavelength periodicity, the full width at half-maximum of the focal spot produced by the singlet and doublet is smaller than that produced by an ideal lens with the same geometric parameters. Finally, we simulate a realistic experimental scenario for the doublet, where the spheres are placed on a substrate with the same refractive index. We find the performance is similar, but with lower intensity at the focal spot and larger spot size. The method described here will simplify the design procedure for complicated multi-functional optical elements and or scatterer array-based volume optics based on a specified figure of merit.
منابع مشابه
Full three dimensional inverse design of dielectric slab based scattering optical elements devices
Inverse design through optimization of dielectric photonic devices is a very powerful tool. However so far the direct solver used in the design process is almost always restricted to solve Maxwell’s equation in two dimensions (2D). Here we will show that by using a specific three dimensional (3D) electromagnetic field-solver we can implement a full 3D inverse design tool for Silicon On Insulato...
متن کاملSacrificial-Layer Atomic Layer Deposition for Fabrication of Non-Close-Packed Inverse-Opal Photonic Crystals
Photonic crystals have been studied extensively for their potential to control and manipulate light, similar to the way electrons are controlled in a semiconductor, opening the door to high-speed, low-power, all-optical devices. A common method for fabricating 3D photonic crystals is the infiltration and subsequent inversion of synthetic opal templates to create inverse opals consisting of air ...
متن کاملNovel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators
In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...
متن کاملOptimized Design of Nanohole Array-Based Plasmonic Color Filters Integrating Genetic Algorithm with FDTD Solutions
Recently, significant interest has been attracted by the potential use of aluminum nanostructures as plasmonic color filters to be great alternatives to the commercial color filters based on dye films or pigments. These color filters offer potential applications in LCDs, LEDs, color printing, CMOS image sensors, and multispectral imaging. However, engineering the optical characteristics of thes...
متن کاملNovel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter
Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 57 6 شماره
صفحات -
تاریخ انتشار 2018